

Naming Conventions for Microsoft Access

The Leszynski/Reddick Guidelines for Microsoft Access

Stan Leszynski and Greg Reddick

Revised: May 25, 1994

The authors wish to thank the individuals who submitted comments on and participated in reviews of the
standard.

Stan Leszynski is president of Kwery Corp., which produces several Microsoft® Access® add-on products,
including Access To Word and Kwery Control Paks. Stan also manages Leszynski Company, Inc., a
consulting group active in database development, which he founded in 1982. He writes and speaks on
Access regularly. Stan can be reached at (206) 644-7826 or on CompuServe® at 71151,1114.

Greg Reddick is the president of Gregory Reddick & Associates, a software consulting company specializing
in developing solutions in Microsoft Windows using C/C++, Access, and Visual Basic. He worked for four
years on the Access development team at Microsoft, and has co-authored two Access books. Greg can be
reached at (206) 881-6879 or on CompuServe at 71501,2564.

Editor's Note April, 1998. Although originally written for Microsoft Access 1.x and 2.x, and Access
Basic, the naming conventions in this article still apply equally well to current and forthcoming versions
of Microsoft Access and to Visual Basic for Applications. The code samples in this article may need
slight updating in order to run under Visual Basic for Applications.

If you've ever inherited a project from another developer, you know how frustrating it is to try to dissect
another developer's style and maintain his or her code. When developers code with a common style,
however, you can minimize these frustrations. To best share ideas and knowledge, the Access
development community will benefit greatly if it adopts a common programming style so that we can
benefit from each other's expertise with a minimum of translation overhead. Although Microsoft uses
certain naming conventions in the Microsoft® Access documentation, to date they haven't published an
official or comprehensive standard. Thus, we've formulated a set of naming conventions to better serve
Access users and developers.

These conventions were originally published in the Charter Issue of Smart Access. Since then, we've
logged thousands of hours of development time and scores of comments from Smart Access readers and
other users of the conventions, and we continue to improve the style and make it more useful.

Our naming style ties Access conventions closely to Visual Basic® conventions because we recognize that
many Access developers also use or plan to use Visual Basic for some data access applications. Access and
Visual Basic are becoming more similar with each released version. We've written these naming
conventions so you can also use them with Visual Basic database applications.

There are two levels to the naming style. Level 1 is comprehensive, but doesn't clarify objects as explicitly
as Level 2. Level 1 is suitable for beginning developers, while Level 2 is intended for more experienced
developers and developers involved in complex development projects and multiple-developer
environments. You should experiment and choose the level that works best for you. (Please note that not
all parts of the standard have two levels.)

If you're already using any previous version of our conventions, you may need to make a few changes to

Cli k

Page 1 of 12Naming Conventions for Microsoft Access

1/20/2004http://ken.slctech.org/PROG67/Naming%20Conventions%20for%20Microsoft%20Access.htm

accommodate the enhancements in this revision. Because Access provides little help in renaming objects,
you may wish to leave existing applications as is and apply the revised conventions to new projects, going
back to existing applications as time permits.

Naming Conventions: An Overview

Our naming style is based on a method of naming called Hungarian, referring to the nationality of its
creator, Charles Simonyi (who, incidentally, worked on the first version of Access). Hungarian was first
proposed in his doctoral thesis.

Some elements of Hungarian style are used in Microsoft's Visual Basic manuals and Development Kit
documentation, among others. Microsoft uses Hungarian internally, and many programmers around the
world use it as well. We've adapted the Hungarian style for the Access environment.

In our Access naming style, an object name is made up of four parts: one or more prefixes, a tag, a base
name, and a qualifier. The four parts are assembled as follows:

[prefixes]tag[Basename][Qualifier]

Note The brackets denote that these components are optional and aren't part of the name.

The tag is the only required component, but in almost all cases the name will have the base name
component because you need to be able to distinguish two objects of the same type. (Having the tag as
the only required part may seem counterintuitive, but in Access Basic you can have code that deals with a
generic form passed as a parameter. In this case you'd use "frm" as the parameter name; the base name
isn't required except to distinguish it from a different form object variable in the code.). Here are a few
examples:

Prefixes and tags are always lowercase so your eye goes past them to the first uppercase letter where the
base name begins. This makes the names more readable. The base and qualifier components begin with
an uppercase letter.

The base name succinctly describes the object, not its class. This is the name you'd likely give the object if
you weren't using any particular naming style. For example, in the query name qryPartNum, "PartNum" is
the base name; it's an abbreviation for Part Number. Object tags are short and mnemonic. Object prefixes
precede some object names and tags and provide further information. For example, if an integer variable
intPartNum is an array of part numbers, the prefix "a" for array is added to the front, as in aintPartNum().
Further, a variable that provides an index into the array would use the name of the array prefixed with the
index prefix "i", for example, iaintPartNum.

Applying a naming style like this requires more effort up front, but try to imagine which of these two code
samples will make more sense to you a year from now when you attemptto modify or reuse your code:

Z = Y(X)

Name Prefix Tag Base Qualifier

tblCustomer tbl Customer

aintPartNum a int PartNum

strCustNamePrev str CustName Prev

Page 2 of 12Naming Conventions for Microsoft Access

1/20/2004http://ken.slctech.org/PROG67/Naming%20Conventions%20for%20Microsoft%20Access.htm

or

intPart = aintPartNum(iaintPartNum)

Object qualifiers may follow a name and further clarify names that are similar. Continuing with our parts
index example, if you kept two indexes to the array, one for the first item and one for the last, the
variable iaintPartNum above would become two qualified variables—iaintPartNumFirst and
iaintPartNumLast.

Naming Database Objects

Database objects (tables, queries, forms, reports, macros, and modules) are the most frequently
referenced items in an Access application. They appear in your macro code, in your Access Basic routines,
and in properties. Thus, it's important that you standardize how you name them.

Microsoft's examples in the Northwind Database and Access manuals allow for spaces in object names, but
we don't use them in our style. In most database engines and programming languages, including Access
Basic, a space is a delimiter character between items, it isn't a logical part of an item's name. Also, spaces
in field names don't work in most other database platforms or Microsoft Windows®-based applications
such as Microsoft SQL Server™ or Word for Windows. Instead, use upper and lowercase designations in
names, such as tblAccountsPayable. If spacing is still necessary, use the underscore (_) character instead
of a space to be consistent with traditionally accepted SQL syntax and with Access 2.x function naming
conventions.

Tags for Database Container Objects

All database container object names in our style have tags. Adding tags to these objects may make them
less readable to nondevelopers, but new users will understand their value when they're trying to discern a
table from a query in the listbox for a New Report wizard or a form's Control Source property. This is
because Access merges table and query names into one long list. Here are Level 1 database container
object name tags:

At Level 1, the only name qualifier (appended to the name) that we use for database container objects is
Sub, which we place at the end of a form or report name for a subform or subreport. The form
frmProductSupplier would have the related subform frmProductSupplierSub. This allows objects and their
subform or subreport to sort next to each other in the database container.

Level 2 tags, shown here, provide more descriptive information.

Object Tag Example

Table tbl tblCustomer

Query qry qryOverAchiever

Form frm frmCustomer

Report rpt rptInsuranceValue

Macro mcr mcrUpdateInventory

Module bas basBilling

Page 3 of 12Naming Conventions for Microsoft Access

1/20/2004http://ken.slctech.org/PROG67/Naming%20Conventions%20for%20Microsoft%20Access.htm

Using our Level 2 style causes objects with similar functions to sort together in the database container in
large applications. Imagine that you have a database container with 100 forms in it (we do!), 30 of which
are messages that display during the application. Your users now want all message forms to have red text
instead of black, so you must change each of the 30 forms. Having the message forms sort together in the
database container (because they've all got the same tag) saves you significant effort trying to discern
which forms you need to change.

Object Tag Example

Table tbl tblCustomer

Table (lookup) tlkp tlkpShipper

Query (select) qry (or qsel) qryOverAchiever

Query (append) qapp qappNewProduct

Query (crosstab) qxtb qxtbRegionSales

Query (data definition) qddl qddlAddWorkColumn

Query (delete) qdel qdelOldAccount

Query (form filter) qflt qfltSalesToday

Query (lookup) qlkp qlkpStatus

Query (make table) qmak qmakShipTo

Query (pass-through) qspt qsptArchiveQuantity

Query (union) quni quniOrderDetail

Query (update) qupd qupdDiscount

Form frm frmCustomer

Form (dialog) fdlg fdlgLogin

Form (menu) fmnu fmnuUtility

Form (message) fmsg fmsgWait

Form (subform) fsub fsubOrder

Report rpt rptInsuranceValue

Report (subreport) rsub rsubOrder

Macro mcr mcrUpdateInventory

Macro (for form) m[formname] mfrmCustomer

Macro (menu) mmnu mmnuEntryFormFile

Macro (for report) m[rptname] mrptInsuranceValue

Module bas basBilling

Page 4 of 12Naming Conventions for Microsoft Access

1/20/2004http://ken.slctech.org/PROG67/Naming%20Conventions%20for%20Microsoft%20Access.htm

Choose your table names carefully. Since changes to the names of Access objects do not propagate
through the database, it is important to name things correctly when the object is created. For example,
changing the name of a table late in the development cycle requires changing all the queries, forms,
reports, macros, and modules that refer to that table.

You may want to name each database object that refers to a table with the same base name as the table,
using the appropriate tag to differentiate them. For example, if your table is tblCustomer, its primary form
would be frmCustomer, its primary report would be rptCustomer, and the macros that drive all of the
events would be mfrmCustomer and mrptCustomer. We also suggest that you not make table names
plural (for example, use tblCustomer, not tblCustomers), because a table usually holds more than one
record, so it's plural by implication.

Database Object Prefixes

We use four database object prefixes:

"zz" denotes objects you've deserted but may want to keep in the database for awhile for future
reference or use (for example, zzfrmPhoneList). "zz" causes the object name to sort to the bottom
of the database container, where it's available but out of the way.

"zt" denotes temporary objects (for example, ztqryTest).

"zs" denotes system objects (for example, zstblObjects). System objects are items that are part of
the development and maintenance of an application not used by end users, such as error logs,
development notes, documentation routines, relationship information, and so on. (Note that "zs" is a
prefix. It causes the system objects to sort toward the bottom of the database container).

"_" denotes objects under development (for example, _mcrNewEmployee). An underscore before an
object name sorts to the top of the database container to visually remind you that it needs
attention. Remove the underscore when the object is ready to use and it will sort normally.

Tags for Fields

Using tags in field names is a hotly debated issue, even between the authors of this article. Greg
maintains that tags in field names uniformly apply the naming style across all database elements and
further document your work in Access Basic routines and form or report properties. Stan prefers that the
database schema remain pure (platform- and data type-independent) for migration and connectivity to
other products or platforms. He prefers that a field name remain independent of its data type.

Consider both positions, along with your unique needs, when you choose whether to apply the field name
tags shown here:

Field Type Tag Example

Binary bin binInternal

Byte byt bytFloorNum

Counter lng lngPKCnt

Currency cur curSalary

Date/Time dtm dtmHireDate

Page 5 of 12Naming Conventions for Microsoft Access

1/20/2004http://ken.slctech.org/PROG67/Naming%20Conventions%20for%20Microsoft%20Access.htm

Notes:

The Access engine ("Jet") supports a data type called binary but the Access user interface doesn't
expose it to the user. It's still possible to get a field with the binary data type by importing or
attaching certain external tables. Also, some of the system table fields use this data type.

Internally, Access treats a counter data type as a long integer with a special property called auto-
increment. Because counter fields are often referenced by foreign keys and the data type in the
other table is a long, Greg uses the same tag as a long. Optionally, if you want to distinguish a
counter from a long, use the qualifier Cnt at the end of the name.

Tags for Control Objects

Access forms and reports automatically assign the field name to the Control Name property when you
create a new bound control. Having the control name and field name the same creates some ambiguity in
the database schema and in some cases may cause errors in Access Basic code referencing both a control
and a field with the same name. To resolve this situation, apply the naming style to form and report
controls by inserting the appropriate tag from the list below, in front of the control name suggested by
Access. For example, the control name for a field whose Control Source is LastName would be
txtLastName.

At Level 1, we recognize that users need to know the difference between an active control and a label, but
may not be concerned with the type of the control. Thus the control tags are as follows:

Level 1 tags provide the minimum differentiation necessary to still prove useful in functions, macros, and
program documentation. For example, the control tags above allow you to differentiate between labels,
which aren't modifiable at runtime, and other controls, which accept values from code and users.

Double dbl dblMass

Integer int (C programmers may prefer "w") intUnit

Long lng (C programmers may prefer
"dw")

lngPopulation

Memo mem memComments

Ole ole oleEmpPhoto

Single sng (Some users find "sgl" more
mnemonic)

sngScore

Text str (Used as opposed to "txt"
because a textbox control uses
"txt". C programmers may prefer
"sz")

strFirstName

Yes/No ysn (C programmers may prefer "f") ysnDiscounted

Object Tag Example

Label lbl lblLastName

Other types ctl ctlLastName

Page 6 of 12Naming Conventions for Microsoft Access

1/20/2004http://ken.slctech.org/PROG67/Naming%20Conventions%20for%20Microsoft%20Access.htm

Level 2 control tags denote the specific type of the control on the form or report (see table below). This
makes Access Basic code and macros more explicit with respect to the properties and events of the
individual control.

The only prefix for controls, "zs", appears at Level 2. It denotes system-level controls used by the form or
code but not displayed to the user. Such controls usually aren't visible at run time but they may store
temporary values or parameters passed to the form.

Naming Access Basic and Macro Objects

Using standardized and descriptive variable, constant, and function names greatly enhances the ability of
developers to share, maintain, and jointly develop code.

Procedures and Macros

Access Basic requires that each nonprivate procedure name in a database be unique. For a function called
from a property on a form in Access 1.x, construct the function name as follows:

formname_controlname_propertyname

For example:

Object Tag Example

Chart (graph) cht chtSales

Check box chk chkReadOnly

Combo box cbo cboIndustry

Command button cmd cmdCancel

Frame (object) fra fraPhoto

Label lbl lblHelpMessage

Line lin linVertical

List box lst lstPolicyCode

Option button opt optFrench

Option group grp grpLanguage

Page break brk brkPage1

Rectangle (Visual Basic uses the term
"shape")

shp shpNamePanel

Subform/report sub subContact

Text box txt txtLoginName

Toggle button tgl tglForm

Page 7 of 12Naming Conventions for Microsoft Access

1/20/2004http://ken.slctech.org/PROG67/Naming%20Conventions%20for%20Microsoft%20Access.htm

frmEmployee_cmdAdd_Push

This tells you that this function is called from the OnPush property of the control cmdAdd on the form
frmEmployee. For a property that affects the entire form, just use formname_propertyname, as in
frmEmployee_Open. If two or more controls on one form execute the same code, create unique functions
for each using the naming style in this section, then have each of these functions call the same private
function that contains the common code.

In Access 2.x, the code for controls on a form is stored attached to the form, so the form name is implied
in the function and does not need to be in the function name. Thus, the example above becomes:

cmdAdd_Click

Macro names inside a macro group also use this format. In the macro group mfrmEmployee, the macro
txtName_BeforeUpdate contains the actions for the txtName control's BeforeUpdate event. For example,
the txtName control on your frmEmployee form would have one of these properties, depending on
whether you use modules (Access 1.x), attached code (Access 2.x), or macros to implement the task:

1.x code:BeforeUpdate....=frmEmployee_txtName_BeforeUpdate()

2.x code:BeforeUpdate....=txtName_BeforeUpdate()

Macros:BeforeUpdate...mfrmEmployee.txtName_BeforeUpdate

You should prefix procedure names in library databases with a unique set of characters to prevent their
names from conflicting with any other names from attached libraries. The prefix should be in uppercase
letters, followed by an underscore, and be no more than four letters. For example, we prefix all the library
function names for our mail-merge utility, Access To Word, with "ATW_". Global constants and variables in
a library should use the same prefix because they must also be unique across the entire database name
space. Similarly, it is important to use these prefixes in Declare statements to alias all external dynamic-
link library (DLL) function and procedure calls.

Tags for Access Basic Variables

Every Access Basic variable should have a type tag from the following list:

Variable Type Tag Example

Container con Dim conTables as Container

Control ctl Dim ctlVapor As Control

Currency cur Dim curSalary As Currency

Database db Dim dbCurrent As Database

Document doc Dim docRelationships as Document

Double dbl Dim dblPi As Double

Dynaset dyn Dim dynTransact As Dynaset

Flag (Y/N, T/F) f Dim fAbort As Integer

Page 8 of 12Naming Conventions for Microsoft Access

1/20/2004http://ken.slctech.org/PROG67/Naming%20Conventions%20for%20Microsoft%20Access.htm

Our style doesn't use data-type suffixes such as $ and % on variable names, because the Access and
Visual Basic documentation recommends against using these suffixes.

Tags for database object variables such as the Form and Report types are the same as those used for the
objects. This helps when coding, because the variable you assign an object to (for example, tblVendor)
usually has the same name as the object it references (tblVendor), providing you with consistent object
names when coding.

Constants and User-Defined Types

It is common practice in programming for Windows to use uppercase names for constants, but the authors

Field fld Dim fldLastName as Field

Form frm Dim frmGetUser As Form

Group gru Dim gruManagers as Group

Index idx Dim idxOrderId as Index

Integer int Dim intRetValue As Integer

Long lng Dim lngParam As Long

Object obj Dim objGraph As Object

Parameter prm Dim prmBeginDate as Parameter

Property prp Dim prpUserDefined as Property

QueryDef qdf (or qrd) Dim qdfPrice As QueryDef

Recordset rec (or rst) Dim recPeople as Recordset

Relation rel Dim relOrderItems as Relation

Report rpt Dim rptYTDSales As Report

Single sng Dim sngLoadFactor As Single

Snapshot snp Dim snpParts As Snapshot

String str Dim strUserName As String

Table tbl Dim tblVendor As Table

TableDef tdf (or tbd) Dim tdfBooking as TableDef

Type (user-defined) typ Dim typPartRecord As mtPART_RECORD

User usr Dim usrJoe as User

Variant var Dim varInput As Variant

Workspace wrk (or wsp) Dim wrkPrimary as Workspace

Yes/No18 ysn Dim ysnPaid As Integer

Page 9 of 12Naming Conventions for Microsoft Access

1/20/2004http://ken.slctech.org/PROG67/Naming%20Conventions%20for%20Microsoft%20Access.htm

differ on how to treat constants. Stan prefers using the uppercase notation and adding a scope prefix (see
below), so a global constant for a specific error might be gNO_TABLE_ERROR. Greg prefers to treat
constants as typed variables without scope, for example, strNoTableError.

In the above table, we've added a variable type tag of "typ" for user-defined types, and suggest a
convention that matches that of constants, because you can think of both user-defined types and user-
defined constants as persistent, user-created objects. The recommendations for a user-defined data type
syntax include the following:

Use uppercase letters (or upper/lower syntax if you use that optional convention for globals).

Use a tag of "t" in front of the type name to denote that it's a type structure.

Use "g" and "m" prefixes to denote the scope of the type (see below).

Prefixes for Scope

Level 2 of the naming convention introduces scope prefixes for variables and constants. The scope prefix
comes before any other prefixes.

Variables declared locally with a Dim statement have no prefix.

Variables declared locally with a Static statement are prefixed with an "s", as in "sintAccumulate".

Variables that are declared in the Declarations section of a module (or form in Visual Basic) using a
Dim statement are prefixed with an "m", as in "mcurRunningSum".

Variables declared with global scope using a Global statement in the Declarations section have the
prefix "g", as in "glngGrandTotal".

Variables that denote parameters passed to a function (in the parentheses after the function name)
have a prefix of "p", as in "pstrLastName". Alternately, we sometimes use "r" instead of "p" for
values passed to a function by reference, and "v" for values passed ByVal, when both types of
parameters are used in a single function declaration.

Object qualifiers follow the variable name and further differentiate it from similar names. You'll probably
devise a list of qualifiers relevant to the types of applications you develop, but here are some of our
common ones:

Variable Property Qualifier Example

Current element of set Cur iaintCur

First element of set First iaintStockFirst

Last element of set Last iaintStockLast

Next element of set Next strCustomerNext

Previous element of set Prev strCustomerPrev

Lower limit of range Min iastrNameMin

Upper limit of range Max iastrNameMax

Page 10 of 12Naming Conventions for Microsoft Access

1/20/2004http://ken.slctech.org/PROG67/Naming%20Conventions%20for%20Microsoft%20Access.htm

Access Basic Labels

For Access Basic labels, we use a qualifier on the function name to create several standard labels. For On
Error GoTo statements, we use the name of the function with the qualifier _Err appended, for example:

cmdAdd_Click_Err:

Some functions also have a label for jumping forward to the end of the function, because it's more
appropriate to leave a function only in one place than to scatter Exit Function statements throughout a
routine. We use the Done qualifier, as in:

cmdAdd_Click_Done:

Access Basic Example

Below is an example of an Access Basic routine using the naming conventions. Note these items:

We put a header in every function that describes, at a minimum, purpose, comments, author's
name/date, last revision date and notes, and parameters passed and/or returned.

We return to the Done routine from the Error routine to ensure that open objects are closed properly
before exiting the function. The temptation to simply use Exit Function from an error handler may
leave files open and locked.

The example was originally written for Access 1.x and uses syntax that has been modified in 2.x (for
example, CreateDynaset is now OpenRecordset).

Function EliminateNulls (ByVal vstrFieldName As String, ByVal vstrTableName As String) As Integer
' What: Replaces Null values with unique ascending integers
' A standardized version of a routine from NWIND and Chapter 8
' Author: Microsoft Created: 11/92 Last Revision: 5/25/94 By: grr/swl
' Passed in: field name and table name
' Returns: 0/-1

 On Error GoTo EliminateNulls_Err
 Dim db As Database
 Dim dynTableSrc As Dynaset
 Dim varCounter As Variant
 Dim varCriteria As Variant

 EliminateNulls = 0
 Set db = CurrentDB()
 Set dynTableSrc = db.CreateDynaset(vstrTableName)
 varCounter = DMax(vstrFieldName, vstrTableName)
 If IsNull(varCounter) Or IsEmpty(varCounter) Then
 varCounter = 1
 Else
 varCounter = Val(varCounter) + 1
 End If
 varCriteria = vstrFieldName & " = Null"

 ' Iterate over all records in the table, throw out records with Nulls
 dynTableSrc.FindFirst varCriteria

Source Src lngBufferSrc

Destination Dest lngBufferDest

Page 11 of 12Naming Conventions for Microsoft Access

1/20/2004http://ken.slctech.org/PROG67/Naming%20Conventions%20for%20Microsoft%20Access.htm

 Do Until dynTableSrc.NoMatch
 dynTableSrc.Edit
 dynTableSrc(vstrFieldName) = varCounter
 dynTableSrc.Update
 varCounter = varCounter + 1
 dynTableSrc.FindNext varCriteria
 Loop
 EliminateNulls = -1

EliminateNulls_Done: ' Jump here to clean up and exit
 dynTableSrc.Close
 db.Close
 On Error GoTo 0
Exit Function

EliminateNulls_Err:
 Select Case Err
 ' Handle specific errors here
 Case Else
 ' Generic error handler here
 Resume EliminateNulls_Done
 End Select
End Function

Putting Standards into Practice

Naming conventions never replace the judicious use of comments in your table definitions, macro code, or
Access Basic routines. Naming conventions are an extension of, not a replacement for, good program-
commenting techniques.

Formulating, learning, and applying a consistent naming style requires a significant initial investment of
time and energy. However, you'll be amply rewarded when you return to your application a year later to
do maintenance or when you share your code with others. Once you implement standardized names,
you'll quickly grow to appreciate the initial effort you made.

If the entire Access community, including Microsoft, coded using one common naming style, we'd all find
it easier to share information about Access. With this in mind, we submit these revised guidelines to the
Access community.

This document accompanied the August 1994 issue of Smart Access Journal, published by Pinnacle
Publishing, Inc. Earlier versions of these guidelines were published in the February and August 1993
issues of Smart Access.

This document copyright 1993-1994 by Stan Leszynski and Greg Reddick. It may be distributed freely as
long as no profit is made from its publication or distribution, or from publications that include it, and the
complete text is published or distributed without alteration of the content. All other rights reserved. Please
send the authors a copy of any publication that includes this document.

Send feedback on this article. Find support options.

© 2001 Microsoft Corporation. All rights reserved. Terms of use.

Page 12 of 12Naming Conventions for Microsoft Access

1/20/2004http://ken.slctech.org/PROG67/Naming%20Conventions%20for%20Microsoft%20Access.htm

